
Lab 10.2: Building an ISAPI Application (Echo)
Lab Overview
Objectives
After completing this lab, you will be able to:

 Use the ISAPI Extension Wizard to create an ISAPI application project with Microsoft Visual C++.
 Implement the project, including:

 Add and manage parse map entries corresponding to request methods.
 Add handler member functions corresponding to the parse map entries.
 Implement the handlers and supporting functions and classes

 Install and test an ISAPI application.

Scenario
You can develop ISAPI applications to extend a Web site that uses an ISAPI-compliant Web server.
These components flexibly extend the Web server by performing various programmed actions, then
typically return a dynamically-created HTML page to the Web client.

Lab Setup
To develop the ISAPI component, this lab requires that you have Microsoft Visual C++ version 4.1 or
later installed on your computer. To test this component, you must have administrative privileges on a
computer running Windows NT and a Microsoft Web service, such as Internet Information Server or
Peer Web Services.

This demonstration shows the solution to this lab.

Estimated time to complete this lab: 90 minutes.

Exercises
The following exercises provide practice working with the concepts and techniques covered in this
chapter.

Exercise 1: Creating the Project
In this exercise, you will use Microsoft Visual C++ to create the Echo ISAPI application project. You will
select and edit various options in the ISAPI Extension Wizard dialog, as appropriate for the Echo
application.

Exercise 2: Implementing Echo
In this exercise, you will implement the Echo ISAPI application. To accomplish this, you will manage the
parse map for the project, add and implement basic versions of the handler member functions
corresponding to request methods, and add and implement helper member functions.

Exercise 3: Testing Echo
In this exercise, you will install the basic version of the Echo ISAPI application on your Microsoft Web
server and test it with Internet Explorer. Optionally, you will repeat the testing process with the supplied
HTML page, EchoTest.htm.

Then, you will test the final version of Echo, and repeat the testing process. To accomplish this, you will
need to uninstall the previous version of Echo.dll.

2 Lab 10.2: Building an ISAPI Application (Echo)

Exercise 1: Creating the Project
In this exercise, you will use Microsoft Visual C++ to create the Echo ISAPI application project. You will
select and edit various options in the ISAPI Extension Wizard dialog, as appropriate for the Echo
application.

The Echo ISAPI application echoes the request information from the client's HTTP request message.
The application contains one method, EchoRequest, that enables the client to receive command help,
HTTP header and body information, or a bad syntax error message. Echo is a simple developer's tool
that compliments the WebClient utility.

 Create a new project for Echo
1. Start Microsoft Developer Studio. From the File menu, choose New.
2. In the New dialog, select Project Workspace, and choose OK. The New Project Workspace dialog is

displayed.
3. Supply the following information in the New Project Workspace dialog:

 Type - Select ISAPI Extension Wizard
 Name - Enter Echo
 Platform - Select Win32 (default)
 Location - Enter or browse for \<MID root directory>\Labs\Lab10.2\Echo

Then, choose the Create button. The ISAPI Extension Wizard dialog, Step 1 of 1, is displayed.

4. In the ISAPI Extension Wizard dialog, make the following corrections and verifications:
 The Generate A Filter Object check box should be cleared, and Generate A Server Extension

Object should be selected.
 Change the Extension Description to Echo ISAPI App.
 Use the MFC libraries As A Shared DLL

When you are done, choose Finish.
5. A summary dialog box appears. After you review the information in it, choose OK to generate the new

project.

 Use the Project Workspace to investigate Echo
1. Select the ClassView pane of the Project Workspace, if it is not already displayed. Expand all the

branches of the Echo classes.
2. Double-click on the following entries to view the associated source code.

 CEchoExtension – to view your CHttpServer-derived class declaration. Note the line towards the
end of the file that declares the parse map.

 GetExtensionVersion – to view the initialization member function that the Wizard generated for your
ISAPI application.

 Default – to view the example command handler generated by the Wizard.
 theExtension – to view the single instantiation of your CHttpServer-derived class.

3. Select the ResourceView pane. Expand all the branches of the Echo resources.
4. Double-click on the following entries to view the associated Windows resource.

 String Table has a single-string resource, IDS_SERVER, which is the string description used by
CEchoExtension::GetExtensionVersion to register an extension description with the Web server.
(You supplied this string when you ran the ISAPI Extension Wizard in the previous step.)

 VS_VERSION_INFO is an editable program-version resource.

Lab 10.2: Building an ISAPI Application (Echo) 3

5. In the FileView pane, open Echo.cpp. Toward the top of the file, locate the parse map implementation.
Note that the Wizard has placed an entry for the example handler, Default, into the map. This handles
the invocation of the ISAPI extension when no method is supplied, because it uses the special macro
DEFAULT_PARSE_COMMAND.

6. Open the file Echo.def. Note that it only exports the two entry points that every ISAPI application must
have: the global C functions HttpExtensionProc and GetExtensionVersion.

 Build the Echo project
1. Build the application, targeting Win32 Debug. Echo should compile and link cleanly.
2. Close all the source windows except the ones for Echo.h and Echo.cpp. You will be editing these files

in the subsequent exercises of this lab.

Exercise 2: Implementing Echo
In this exercise, you will implement the base Echo ISAPI application. To accomplish this, you will manage
the parse map for the project, add and implement basic versions of the handler member functions
corresponding to request methods, and add and implement helper member functions.

 Edit the CEchoExtension class declaration
To complete the Echo ISAPI application, you will add a new command handler, named EchoRequest,
and three helper functions, which will be declared in a protected-implementation section.

1. Open the file Echo.h, if it is not already open. Locate the Default member function.
2. Immediately after the Default member function, add a new handler, named EchoRequest, that returns

nothing, and takes two arguments: a pointer to the CHttpServerContext object and a LPCTSTR.
3. Just before the declaration of the parse map, add a comment that denotes an Implementation section.

Afterward, add a Protected access specifier.
4. In this new section, add four new helper member functions named EchoBody, EchoHead, BadSyntax,

and EchoHelp. All of these functions have the same signature: they return nothing and take a single
argument, a pointer to the CHttpServerContext object.

5. Save your work in the file Echo.h.

 Edit the parse map
1. Open the file Echo.cpp, if it is not already open. Locate the parse map implementation near the top of

the file.
2. Add parse map entries for the command handler, EchoRequest. The first entry identifies the new

command handler and specifies its arguments:
ON_PARSE_COMMAND(EchoRequest, CEchoExtension, ITS_PSTR)

The second entry names the argument of the associated ISAPI invocation method and supplies a
default text value of FULL.

ON_PARSE_COMMAND_PARAMS("option=full")
If the server's name is WebSvr, these two parse map entries specify an ISAPI method that can be
invoked through one of the following URLs:

http://WebSvr/Scripts/Echo.dll?EchoRequest
http://WebSvr/Scripts/Echo.dll?EchoRequest&full
http://WebSvr/Scripts/Echo.dll?EchoRequest&option=full

4 Lab 10.2: Building an ISAPI Application (Echo)

 Implement the default handler
The default implementation for an ISAPI application, if present, usually performs the standard processing
routine. However, since Echo is a developer's tool, you will code it to return a help page.

1. Locate the implementation of CEchoExtension::Default.
2. Replace the statements in this function that begin with *pCtxt with the following lines:

*pCtxt << "<P><H1>Help for Echo.dll</H1><P><HR>";
EchoHelp(pCtxt);

EchoHelp is a helper member function that you will add in a later step.

 Implement the EchoRequest command handler
In MFC, one of the initial responsibilities of the command handler is to distinguish the passed
argument(s), if any, and determine appropriate processing based on those arguments.

1. Copy the implementation of CEchoExtension::Default and paste it immediately after the original.
2. Rename the new function CEchoExtension::EchoRequest. Add a second argument to the signature,

LPCTSTR pstrOption.
3. Edit the output line as shown:

*pCtxt << "<P><H1>Echo.dll</H1><P><HR>";
4. Replace the call to EchoHelp with a nested if-else statement that does a case-insensitive comparison

(_stricmp) of the handler's second argument and of these expected values:
String Match Action(s)
"header" Call EchoHead, passing along the pointer to the server context
"body" Call EchoBody, passing along the pointer to the server context
"full" Call EchoHead, and then EchoBody
other Call BadSyntax, passing along the pointer to the server context

EchoHead, EchoBody, and BadSyntax are helper member functions that you will add during later
steps.

 Implement the EchoHead helper function

Note: Because the Web server parses the HTTP header by the time an ISAPI application is invoked, the
application cannot actually echo the original header request. Instead, it can only return pieces of the
original header.

1. After the EchoRequest function, add a comment separator with the label Implementation Member
Functions.

2. Add the function header and empty body for the EchoHead function. Copy the declaration from the file
Echo.h to get started.

3. Inside the body, declare two local variables: an array of 1000 characters named pstrBuffer, and a
DWORD variable named dwSize, initialized to the size of the array.

4. Write an appropriate HTML header line to the HTML stream:
*pCtxt << "<P><H3>Request Header Information</H3>";

5. Write a line that displays the request method. One way to obtain the request method is to search the
extension control block member of the server context object for this information:

*pCtxt->m_pECB->lpszMethod
See the Help topics CHttpServerContext Class Members and EXTENSION_CONTROL_BLOCK for
more information.

6. Write a line that displays the translated resource path, lpszPathTranslated.

Lab 10.2: Building an ISAPI Application (Echo) 5

7. Next, use CHttpServerContext::GetServerVariable to obtain the query string of the request URL. Use
pstrBuffer and the address of dwSize for the last two arguments. In the next statement, write this
query string using CHttpServerContext::.
This member function represents another way of accessing client-request information.

8. On the next line, reset the value of dwSize to the size of pstrBuffer, and assign the first character of
pstrBuffer to a value of zero (the Null character).

9. Use CHttpServerContext::GetServerVariable to obtain the remote address of the client. In the next
statement, enter this information:

pCtxt->GetServerVariable("REMOTE_ADDR", pstrBuffer, &dwSize);
*pCtxt << "
Client IP address: " << pstrBuffer;

 Implement the EchoBody helper function
1. Copy the function implementation for EchoHead. Rename this version to EchoBody.
2. Edit the HTML header line, as shown:

"<P><H3>Request Body Information</H3>
";
3. Increase the size of the pstrBuffer array to be 4000.
4. Call the function CHttpServerContext::ReadClient to copy the first 4000 bytes of the HTTP request

body to the array pstrBuffer. Store the size of the body in the variable dwSize.
5. Write the size of the HTTP body to the HTML stream. Before writing it, cast dwSize to be a long

integer.
6. If the read operation was successful, write this information to the HTML stream:

if (b == TRUE)
*pCtxt << pstrBuffer;

 Implement the BadSyntax and EchoHelp helper functions
These two functions simply write textual information. BadSyntax displays an error message and then
help information; EchoHelp displays only the help information.

1. Implement BadSyntax.
a. Write a syntax error message to the HTML stream.
b. Call the EchoHelp function, passing along the server context.

2. Implement EchoHelp to write syntax information to the HTML stream.
To save time, you may want to copy the implementations of these two functions from the source code in
the \Labs\Lab10.2\Solution subdirectory of the Mastering Internet Development CD-ROM.

 Build the Echo DLL
Build the Echo project and correct any coding errors. For assistance, refer to the solution code in the
subdirectory \Labs\Lab10.2\Solution of the Mastering Internet Development CD-ROM.

Exercise 3: Testing Echo
In this exercise, you will install the basic version of the Echo ISAPI application on your Microsoft Web
server and test it with Internet Explorer. Optionally, you will repeat the testing process with the supplied
HTML page, EchoTest.htm.

Next, you will test the final, fuller version of Echo, and repeat the testing process. To accomplish this,
you will first need to uninstall the previous version of Echo.dll.

6 Lab 10.2: Building an ISAPI Application (Echo)

 Install the Echo ISAPI application on a Microsoft Web server
The first time you install an ISAPI application, installation is a simple matter of copying the DLL to the
appropriate directory (see Step 2). However, once a client invokes a method from the application,
Microsoft Web servers will load and retain the corresponding DLL. Therefore, the next time you update
the DLL, you will need to perform all of the following steps.

1. To stop the Web service, forcing it to unload an ISAPI application, use one of the following
techniques:
 Reboot Windows to initialize the Web server.
 Use the Internet Service Manager to stop the Web service.
 Use the Web-based Service Administrator to stop the Web service.
 Use the Services applet of the Control Panel to stop the Web service.
 From the command line, issue the command net stop W3Svc. (Use net start W3Svc to restart the

Web publishing service.)
Alternatively, you can force Microsoft Web servers to always reload extension DLLs each time they
are used. To do this, adjust the registry setting to a value of zero at HKEY_LOCAL_MACHINE/
SYSTEM/ CurrentControlSet/ Services/ W3SVC/ Parameters/CacheExtensions. This should only be
used for debugging, because it degrades the performance of the Web server.

2. Copy the file Echo.dll to the \Scripts subdirectory of your Microsoft Web server.
3. Restart the Web service, using one of the techniques listed in Step 1.

 Test Echo with Internet Explorer
1. To test the default handling of the Echo ISAPI application, enter the following into the address box of

Internet Explorer:
http://<server-name>/Scripts/echo.dll?

This invokes the Default method of Echo, which returns the help page.
2. To test the full option of the EchoRequest method of the Echo ISAPI application, use one of the

following URLs:
http://<server-name>/Scripts/echo.dll?EchoRequest
http://<server-name>/Scripts/echo.dll?EchoRequest&Full
http://<server-name>/Scripts/echo.dll?EchoRequest&option=Full

The first URL works because FULL was entered as the default value for EchoRequest's argument.
This was set in the ON_PARSE_COMMAND_PARAMS macro of Echo's parse map.
Note that capitalization of the argument value Full is not a consideration, because a case-insensitive
comparison was used in Echo.

3. To test the header option of the EchoRequest method, use one of the following URLs:
http://<server-name>/Scripts/echo.dll?EchoRequest&Header
http://<server-name>/Scripts/echo.dll?EchoRequest&option=Header

4. To test the body option of the EchoRequest method, use one of the following URLs:
http://<server-name>/Scripts/echo.dll?EchoRequest&Body
http://<server-name>/Scripts/echo.dll?EchoRequest&option=Body

These requests will always result in an empty body.
5. To test the bad syntax option of the EchoRequest method, use a bad argument, such as in the

following URL:
http:// <server-name>/Scripts/echo.dll?EchoRequest&Foo7

Lab 10.2: Building an ISAPI Application (Echo) 7

 Optional: Test Echo with a sample HTML page
1. From the Mastering Internet Development CD-ROM, copy the file \Labs\Lab10.2\EchoTest.htm to

your server's \WWWRoot subdirectory.
2. In Internet Explorer, enter the following URL:

http://<server-name>/EchoTest.htm
The Echo Test page should be displayed.

3. Click on the first button, Request Header, and note the page that is returned. Then, click the Back
button on the Internet Explorer toolbar to return to the Echo Test page.

4. Repeat this process with the remaining buttons.
5. View the source code for the Echo Test page, EchoTest.htm.

 Install and test the full version of Echo
The fuller, final version of the Echo ISAPI application is just an enhancement of the version you have just
coded. It produces better formatted output, and includes more information about the HTTP request
header fields.

1. From the Mastering Internet Development CD-ROM, install the final version of the Echo ISAPI
application (found in the subdirectory \Labs\Lab10.2\Final\Debug\) to your Web server's \Scripts
subdirectory.
For more information, see the first section of this exercise.

2. As you did for the original, base version, test this ISAPI application as outlined in the previous sections
of this exercise.

3. View the source code of the file Echo.cpp, found in the \Labs\Lab10.2\Final\ directory of this CD-
ROM.

	Lab 10.2: Building an ISAPI Application (Echo)
	Exercise 1: Creating the Project
	Exercise 2: Implementing Echo
	Exercise 3: Testing Echo

